
Tutorial for Modular Forms in Pari/GP

Henri Cohen

July 18, 2018

1 Introduction

Three packages are available to work with modular forms and related func-
tions in Pari/GP. The first one is the L-function package, which has been
available since 2.9.0 (2015), and computes with general motivic L-functions,
and in particular with L-functions attached to Dirichlet characters, Hecke
characters, Artin representations, and modular forms. The name of most
functions in this package begins with lfun, such as lfuninit.

The second is the modular symbol package, whose primary aim is not so
much to compute modular form spaces and modular forms, but to compute
p-adic L-functions attached to modular forms. The name of most functions
in this package begins with ms, such as msinit.

The third package is the modular forms package, whose aim is to compute
in the standard spaces Mk(Γ0(N), χ) with k integral or half-integral, both
with modular form spaces and individual modular forms. The name of most
functions in this package begins with mf, such as mfinit. The goal of the
present manual is to describe this package in view of a guide for a new user,
so will essentially be a tutorial, although we include a reference guide at the
end.

We can work on five subspaces of Mk(Γ0(N), χ), through a correspond-
ing space flag in the commands: the cuspidal new space Snew

k (Γ0(N), χ)
(flag = 0), the full cuspidal space Sk(Γ0(N), χ) (flag = 1), the old space
Sold
k (Γ0(N), χ) (flag = 2, probably of little use), the space generated by

all Eisenstein series Ek(Γ0(N), χ) (flag = 3), and finally the full space in-
cluding the Eisenstein part Mk(Γ0(N), χ) (flag = 4, which can be omitted
since it is the default). Note that although it can be defined, we have not
included the space Mnew

k , nor the “certain space” of Zagier–Skoruppa. In

1

the half-integral weight case, we have included only the full cuspidal space
and the full space (flags 1 and 4), as well as the Kohnen’s +-space and the
corresponding newspace and eigenforms when N is squarefree.

Note in particular that the package includes the computation of modular
forms of weight k = 1 and of half-integral weight.

The modular forms themselves are represented in a special internal for-
mat which the user need not worry about and which basically is a recipe
to compute successive Fourier coefficients at infinity: if F is a GP modular
form, mfcoefs(F, 10) will give you the Fourier coefficients at infinity from
a(0) to a(10) of the modular form corresponding to F as a row vector (if you
want a power series expansion, use the GP function Ser, see below). Many
operations are available on such objects, but the most important thing the
user needs to know is that the number of Fourier coefficients need not be
specified in advance: the command mfcoefs(F, n) is valid for any integer n.
We will of course explain the details of this below.

Finally, note that we may roughly divide the complexity of available
functions into three levels:

1. The first level includes all the basic modular form and modular spaces
creation and operations. Many functions are very fast, but some are
quite time-consuming for very different reasons; first those dealing
with forms and spaces involving Dirichlet characters of large order;
second finding eigenforms when the splitting using the Hecke algebra
is difficult; and third modular spaces of weight 1 when there exist
“exotic” forms. Reasonable levels (for low weight) can go up to a
few thousands. The critical parameter is actually the dimension of
the underlying modular form space where linear algebra needs to be
performed, so the time complexity is at least proportional to (N×k)3,
and in fact more than that due to coefficient explosion in the base field
Q(χ).

2. The second level needs technical information about spaces generated
by products of two Eisenstein series, and is quite expensive. But it
allows to perform computations which would be almost impossible oth-
erwise, such as Fourier expansions of f |kγ (hence at any cusp), numer-
ical evaluation of modular forms at any point in the upper half-plane
(even close to the real axis) or L-functions attached to an arbitrary
form. We have included a caching method, so that once a single such
computation is performed in a given space, the needed technical data
is stored and no longer needs to be computed so that all subsequent

2

calls are much faster. Reasonable levels (for low weight) can go up
to one thousand, say. Again, the critical parameter is the space di-
mension but this time the linear algebra is performed in large degree
cyclotomic fields, even when the Nebentypus is trivial. Compared to
the first level, we lose at least a factor Λ(N) (the exponent of the mul-
tiplicative group (Z/NZ)∗) in the time complexity, which gets as large
as N − 1 if N is prime.

3. The third level, which uses the second level functions, allows more
numerical computations such as period polynomials, modular symbols,
Petersson products, etc. . . The time complexity does not increase much
since it is dominated by the second level.

2 Creation of Modular Forms

In Pari/GP modular forms can be created in three different ways:

• As basic modular forms, i.e., forms attached (or not) to different math-
ematical objects, and which are of so frequent use that we have im-
plemented them so that the user has them at his disposal. Examples:
mfDelta (Ramanujan’s delta), mfEk (Eisenstein series of weight k on
the full modular group; of course we also have more general Eisenstein
series), mffrometaquo (eta quotients), mffromell (modular form at-
tached to an elliptic curve over Q), mffromqf (modular form attached
to a lattice).

• From existing forms by applying operations. Examples: multiplica-
tion/division, linear combination, derivation and integration, Serre
derivative, RC-brackets, Hecke and Atkin–Lehner operations, expan-
sion and diamond operators, etc. . .

• Through the creation of the modular form spaces: typically, if only
mf=mfinit is applied, then a basis of forms is obtained by the com-
mand mfbasis(mf). The command mfeigenbasis(mf) produces the
canonical basis of eigenforms.

3 A First Session: working with Leaves

This is now a tutorial session. We will see sample commands as we go along.

3

? D = mfDelta(); V = mfcoefs(D, 8)

% = [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480]

The command mfcoefs(D,n) gives the vector of Fourier coefficients (at
infinity) [a(0), a(1), . . . , a(n)] (note that there are n+1 coefficients). This is a
compact representation, but if you prefer power series you can use Ser(V,q)
(convert a vector into a power series).

% = q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6\

- 16744*q^7 + 84480*q^8 + O(q^9)

(This simple-minded recipe only works when the form has rational coeffi-
cients. Make sure to use q = varhigher("q") first if the form has non-
rational algebraic coefficients to avoid problems with variable priorities.)
Similarly

? E4 = mfEk(4); E6 = mfEk(6); apply(f->mfcoefs(f,3),[E4,E6])

% = [[1, 240, 2160, 6720], [1, -504, -16632, -122976]]

? E43 = mfpow(E4, 3); E62 = mfpow(E6, 2);

? DP = mflinear([E43, E62], [1, -1]/1728);

? mfcoefs(DP, 6)

% = [0, 1, -24, 252, -1472, 4830, -6048]

? mfisequal(D, DP)

% = 1

Self-explanatory. Note that there is a command mfcoef(F, n) (without
the final “s”) which simply outputs the coefficient a(n). A final example of
the same type:

? F = mffrometaquo([1,2; 11,2]); mfcoefs(F,10)

% = [0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2]

? G = mffromell(ellinit("11a1"))[2];

? mfisequal(F, G)

% = 1

Here, mffrometaquo takes as argument a matrix representing an eta
quotient, here η(1× τ)2η(11× τ)2.

The second component of the mffromell output is the modular form
associated to the elliptic curve by modularity.

4

4 A Second Session: Modular Form Spaces

In the first session, we have seen a few preinstalled modular forms (that
we can call leaves), and a number of operations on them. All reasonable
operations have been implemented (if some are missing, please tell us). We
are now going to work with spaces of modular forms.

? mf = mfinit([1,12]); L = mfbasis(mf); #L

% = 2

? mfdim(mf)

% = 2

This creates the full space of modular forms of level 1 and weight 12.
This space is created thanks to an almost random basis that one can obtain
using mfbasis, and we see either by asking for the number of elements of
L or by using the command mfdim, that it has dimension 2, not surprising.
We can see it better by writing:

? mfcoefs(L[1],6)

% = [691/65520, 1, 2049, 177148, 4196353, 48828126, 362976252]

? mfcoefs(L[2],6)

% = [0, 1, -24, 252, -1472, 4830, -6048]

or simply

? mfcoefs(mf,6) \\ apply mfcoefs to mfbasis elements

% =

[691/65520 0]

[1 1]

[2049 -24]

[177148 252]

[4196353 -1472]

[48828126 4830]

[362976252 -6048]

Note two things: first, the Eisenstein series are given before the cusp
forms (this may change, but for now this is the case), and second, the
Eisenstein series is normalized so that it is the coefficient a(1) which is
equal to 1, and not a(0). In particular, here at least, it is a normalized
Hecke eigenform.

If we want to work only in the cuspidal space S12(Γ), we simply use the
flag 1, such as:

5

? mf = mfinit([1,12], 1); L = mfbasis(mf); #L

% = 1

? mfcoefs(L[1],6)

% = [0, 1, -24, 252, -1472, 4830, -6048]

Let us now look at higher dimensional cases. In the following example,
we consider the new space (flag = 0), although in the present case this is
the same as the cuspidal space:

? mf = mfinit([35,2], 0); L = mfbasis(mf); #L

% = 3

? for (i = 1, 3, print(mfcoefs(L[i], 10)))

[0, 3, -1, 0, 3, 1, -8, -1, -9, 1, -1]

[0, -1, 9, -8, -11, -1, 4, 1, 13, 7, 9]

[0, 0, -8, 10, 4, -2, 4, 2, -4, -12, -8]

These are essentially random cusp forms. Usually, you want the eigen-
forms: this is obtained by the function mfeigenbasis (note in passing that
B=mfeigenbasis(mf) adds components to mf, so that the next call is in-
stantaneous). You can ask for the defining number fields with the command
mffields. Note that these commands act only on the new space, but the
package also accepts the spaces that contain it (such as the cuspidal space
or the full space, but not the old space), although the result is only about
the new space.

? mffields(mf)

% = [y, y^2 - y - 4]

? L = mfeigenbasis(mf); #L

% = 2

? mfcoefs(L[1],10)

% = [0, 1, 0, 1, -2, -1, 0, 1, 0, -2, 0]

? mfcoefs(L[2],4)

% = [Mod(0, y^2 - y - 4), Mod(1, y^2 - y - 4),\

Mod(-y, y^2 - y - 4),Mod(y - 1, y^2 - y - 4),\

Mod(y + 2, y^2 - y - 4)]

? lift(mfcoefs(L[2],10))

% = [0, 1, -y, y - 1, y + 2, 1, -4, -1, -y - 4, -y + 2, -y]

The command mffields gives the polynomials in the variable y defining
the number field extensions on which the eigenforms are defined. Here, one
of the fields is Q, the other is Q(

√
17). To obtain the eigenforms, we use

6

mfeigenbasis, and there are only two and not three, since the one defined on
Q(
√

17) goes together with its conjugate. Asking directly mfcoefs(L[2],4)

gives the coefficients as polmods, not easy to read, so it is usually preferable
to lift them, giving the last command, where in the output we must of
course remember that y stands for one of the two roots of y2 − y − 4 = 0,
i.e., (1±

√
17)/2.

In fact, for some numerical computations, we really need the coefficients
of the eigenform embedded in C, and not just as abstract algebraic numbers
(in our case of trivial character, they will be in R). This is why a few
functions (most notably mfeval and lfunmf) will return a vector of results
and not a scalar when called on such a form.

For instance, here is a little GP script which computes the numerical
expansion of a modular form instead of the expansion in polmods:

mfcoefsembed(F,n) = mfembed(F, mfcoefs(F,n));

Note that this produces a vector of expansions when the eigenforms are
defined over an extension, i.e. [Q(F) : Q(χ)] > 1, one per conjugate form.

? mfcoefsembed(L[2],5) \\ two conjugate forms

%4 = [[0, 1, 1.5615..., -2.5615..., 0.43844..., 1],

[0, 1, -2.561...,, 1.5615...,, 4.5615..., 1]]

The first eigenform found above is rational, hence by the modularity
theorem there exists up to isogeny a unique elliptic curve to which it corre-
sponds. We check this by writing

? [mf,F] = mffromell(ellinit("35a1")); mfcoefs(F, 10)

% = [0, 1, 0, 1, -2, -1, 0, 1, 0, -2, 0]

? mfisequal(F, L[1])

% = 1

For a more typical example (still with no character):

? [mfdim([96,2], flag) | flag <- [0..4]]

% = [2, 9, 7, 15, 24]

This gives us the dimensions of the new space, the cuspidal space, the
old space, the space of Eisenstein series, and the whole space of modular
forms.

Just for fun, we write (recall that the default is the full space):

7

? mf = mfinit([96,2]); L = mfbasis(mf);

? for (i = 12, 15, print(mfcoefs(L[i], 15)))

[23/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24]

[31/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24]

[47/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24]

[95/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24]

Apparently, these four Eisenstein series differ only by their constant
term, which is of course not possible. Indeed:

? F = mflinear([L[14],L[12]],[1,-1]); mfcoefs(F, 50)

% = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\

0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0]

? G = mfhecke(mf, F, 24); mfcoefs(G, 12)

% = [1, 24, 24, 96, 24, 144, 96, 192, 24, 312, 144, 288, 96]

? mftobasis(mf, G)

% = [0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\

0, 0, 0, 0, 0, 0]~

? 24*mfcoefs(L[5], 12)

% = [1, 24, 24, 96, 24, 144, 96, 192, 24, 312, 144, 288, 96]

The first command shows that the Eisenstein series differ on their n-th
Fourier coefficient for n = 0, 24, and 48, and the second command applies
the Hecke operator T24 (sometimes denoted U24) to the difference, whose
effect is to replace a(n) by a(24n), giving the much more compact output of
G. The last commands show that G is equal to 24 times the fifth Eisenstein
series L[5].

? mf=mfinit([96,2],0); mffields(mf)

% = [y, y]

? L = mfeigenbasis(mf); for(i=1, 2, print(mfcoefs(L[i], 16)))

[0, 1, 0, 1, 0, 2, 0, -4, 0, 1, 0, 4, 0, -2, 0, 2, 0]

[0, 1, 0, -1, 0, 2, 0, 4, 0, 1, 0, -4, 0, -2, 0, -2, 0]

? Fa = mffromell(ellinit("96a1"))[2]; mfcoefs(Fa, 16)

% = [0, 1, 0, 1, 0, 2, 0, -4, 0, 1, 0, 4, 0, -2, 0, 2, 0]

? Fb = mffromell(ellinit("96b1"))[2]; mfcoefs(Fb, 16)

% = [0, 1, 0, -1, 0, 2, 0, 4, 0, 1, 0, -4, 0, -2, 0, -2, 0]

The mffromell function returns a triple [mf,F,C], where mf is the mod-
ular form cuspidal space to which F belongs, F is the rational eigenform

8

corresponding to the elliptic curve by modularity, and C is the vector of
coefficients of F on the basis in mf, which we recall is usually not a basis of
eigenforms (otherwise F would belong to this basis).

Note also that Fa and Fb are twists of one another:

? mfisequal(mftwist(Fa, -4), Fb)

% = 1

5 Interlude: Dirichlet characters

There are many ways to represent multiplicative characters on (Z/NZ)∗ in
Pari/Gp, we will list them by increasing order of sophistication, restricting
to characters with complex values:

• A quadratic character (D/.) (Kronecker symbol) is described by the
integer D. For instance 1 is the trivial character.

• There is a (non-canonical but fixed) bijection between (Z/NZ)× and
its character group, via Conrey labels. So Mod(a,N) represents a char-
acter whenever a is coprime to N . This makes it easy to loop on all
characters without worrying too much about which is which. In this
labeling, Mod(1,N) is the trivial character, and characters are mul-
tiplied/divided by performing the corresponding operation on their
Conrey labels.

• The finite abelian group G = (Z/NZ)∗ is written

G =
⊕
i≤n

(Z/diZ) · gi,

with dn | · · · | d2 | d1 (SNF condition), all di > 0, and
∏
i di = φ(N).

The SNF condition makes the di unique, but the generators gi, of
respective order di, are definitely not unique. The ⊕ notation means
that all elements of G can be written uniquely as

∏
i g
ni
i where ni ∈

Z/diZ. The gi are the so-called SNF generators of G. The command
znstar(N) outputs the SNF structure (group order, di and gi), but
G = znstar(N, 1) is needed to initialize a group we can work with:
most importantly we can now solve discrete logarithm problems and
decompose elements on the gi.

A character on the abelian group ⊕(Z/djZ)gj is given by a row vector
χ = [a1, . . . , an] of integers 0 ≤ ai < di such that χ(gj) = e(aj/dj) for

9

all j, with the standard notation e(x) := exp(2iπx). In other words,
χ(

∏
g
nj

j) = e(
∑
ajnj/dj). In this encoding [0, . . . , 0] is the trivial

character. Of course a character χ must always be given as a pair
[G,χ], since χ is meaningless without knowledge of the (gi) or the
(di).

The command znchar(S) converts a datum describing a character to the
third form [G,χ]. The command znchartokronecker converts a character
of order ≤ 2 to the first form (D/.), and functions such as zncharconductor,
znchartoprimitive, and zncharinduce allow to restrict or extend charac-
ters between different (Z/MZ)∗.

Note the important fact that it is necessary to give the two arguments G
and χ separately to these functions, for instance zncharconductor(G,chi)

(and not zncharconductor([G,chi])).
Functions such as charmul, chardiv, charpow, charorder or chareval

apply to more general abelian characters than characters on (Z/NZ)×,
whence the prefix char instead of znchar.

6 A Third Session: Nontrivial Characters

Recall that a nontrivial character can be represented either by a discrim-
inant D (not necessarily fundamental), the character being the Legendre–
Kronecker symbol (D/n), or by its Conrey label in (Z/NZ)×, for instance
Mod(161,633) (which has order 42, as znorder tells us).

Defining modular form spaces with character is as simple as without: we
replace the parameters [N, k] by [N, k, χ]. Instead of mf=mfinit([35,2]),
one can write mf=mfinit([35,2,5], 0), where 5 is the quadratic character
(5/.). Thus:

? mf = mfinit([35,2,5],0); mffields(mf)

% = [y^2 + 1]

? F = mfeigenbasis(mf)[1]; lift(mfcoefs(F, 10))

% = [0, 1, 2*y, -y, -2, -y - 2, 2, -y, 0, 2, -4*y + 2]

where in the last output y is equal to one of the two roots of y2 + 1 = 0, i.e.,
±i.

Working with nontrivial characters allows us in particular to work with
odd weights, and in particular in weight 1:

? mf = mfinit([23,1,-23], 0); mfdim(mf)

10

% = 1

? F = mfbasis(mf)[1]; mfcoefs(F, 16)

% = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1]

? mfgaloistype(mf,F)

% = 6

The last output means that the image in PSL2(C) of the projective repre-
sentation associated to F is of type D3. Note that an ”exotic” representation
is given by a negative number, opposite of the cardinality of the projective
image.

Since this form is of dihedral type, it can be obtained via theta functions.
Indeed:

? F1 = mffromqf([2,1; 1,12])[2]; V1 = mfcoefs(F1, 16)

% = [1, 2, 0, 0, 2, 0, 4, 0, 4, 2, 0, 0, 4, 0, 0, 0, 2]

? F2 = mffromqf([4,1; 1,6])[2]; V2 = mfcoefs(F2, 16)

% = [1, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 0, 4, 2, 0, 0, 4]

? (V1 - V2)/2

% = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1]

? mfisequal(F, mflinear([F1, F2], [1, -1]/2))

% = 1

Here we were lucky in that we “knew” that the correct character was
(−23/n). But what if we did not know this ? The first observation is
that modular form spaces corresponding to Galois conjugate characters are
isomorphic (χ is Galois conjugate to χ′ if χ′ = χm for some m coprime
to the order of χ). Thus, it is sufficient to find a representative of each
equivalence class, and this is given by the GP commands G=znstar(N,1);

chargalois(G), where N is the level of the desired character (note that
N will not necessarily be the conductor of the characters). This exactly
outputs a list of representative of each equivalence class (do not for now try
to understand the details of this command, nor the fact that chargalois

and znstar have optional parameters). However, this is not quite yet what
we want. Although only for efficiency, we want characters with the same
parity as the weight, otherwise the corresponding modular form spaces will
be 0. This is achieved by the GP command zncharisodd(G,chi) which does
what you think it does. Let us first do this for N = 23: we write

? G = znstar(23, 1);

? L = [chi | chi<-chargalois(G), zncharisodd(G,chi)]; #L

% = 2

11

? [mfdim([23,1,[G,chi]], 0) | chi <- L]

% = [0, 1]

? [charorder(G,chi) | chi <- L]

% = [22, 2]

This tells us that (up to Galois conjugation) there are two possible odd
characters, one, of order 22, giving a 0-dimensional space, the other being
the quadratic character given above. Note that chargalois returns (orbits
of) characters attached to an arbitrary abelian finite group G while mfinit

expects a pair [G,chi] for some znstar G, as written above.
When doing long explorations with all characters of a certain level, it is

preferable to use wildcards. For instance, instead of the above one can write:

? mfall = mfinit([23,1,0], 0); #mfall

% = 1

? mf = mfall[1]; mfdim(mf)

% = 1

? mfparams(mf)

% = [23, 1, -23, 0]

This does not exactly give us the same information: the third parameter
0 in the first command asks for all nonempty spaces of level 23 and weight
1, and the program tells us that there is only one, of dimension 1. The
last command mfparams outputs [N,k,CHI,space], so here tells us that
the corresponding character is the Kronecker–Legendre symbol (−23/n).

Using wildcards, let us explore levels in certain ranges: we write

wt1exp(lim1,lim2)=

{ my(mfall,mf,chi,v);

for (N = lim1, lim2,

mfall = mfinit([N,1,0], 0); /* use wildcard */

for (i=1, #mfall,

mf = mfall[i];

chi = mfparams(mf)[3]; /* nice format: D or Mod(a,N) */

[print([N,chi,-t]) | t<-mfgaloistype(mf), t < 0]

)

);

}

For instance, wt1exp(1,230) outputs in 4 seconds

12

[124, Mod(87, 124), 12]

[133, Mod(83, 133), 12]

[148, Mod(105, 148), 24]

[171, Mod(94, 171), 12]

[201, Mod(104, 201), 12]

[209, Mod(197, 209), 12]

[219, Mod(8, 219), 12]

[224, Mod(95, 224), 12]

[229, Mod(122, 229), 24]

[229, Mod(122, 229), 24]

Thus, the smallest exotic A4 form is in level 124 and the smallest S4 form
is in level 148. Note that in level 229, we have two (non Galois conjugate)
eigenforms of type S4.

If we type wt1exp(633,633), in 6 seconds we obtain [633, Mod(107,

633), 60], and this level is indeed the lowest level for which there exists a
type A5 form. The character orders are obtained either as znorder(chi)

(since all the chi are intmods), or using the general construction

[G,v] = znstar(chi);

ord = charorder(G,v)

where we first convert chi to a general abelian character in [G,χ] format.

7 Leaf Functions

Although we have already seen most of these functions in the first session,
we repeat some of examples here.

7.1 Functions Created from Scratch

We now start a slightly more systematic exploration of the available func-
tions. We begin by leaf functions, i.e., functions created from scratch or
from a given mathematical object.

? D = mfDelta(); mfcoefs(D, 5)

% = [0, 1, -24, 252, -1472, 4830]

? E4 = mfEk(4); mfcoefs(E4, 5)

% = [1, 240, 2160, 6720, 17520, 30240]

? E6 = mfEk(6);

? D2 = mflinear([mfpow(E4, 3), mfpow(E6, 2)], [1, -1]/1728);

13

? mfisequal(D, D2)

% = 1

Self-explanatory. More complicated Eisenstein series:

? E3 = mfeisenstein(1, 1, -3); mfcoefs(E3, 10)

% = [1/6, 1, 0, 1, 1, 0, 0, 2, 0, 1, 0]

? E4 = mfeisenstein(5, -4, 1); mfcoefs(E4, 10)

% = [5/4, 1, 1, -80, 1, 626, -80, -2400, 1, 6481, 626]

? H2 = mfEH(5/2); mfcoefs(H2,10)

% = [1/120, -1/12, 0, 0, -7/12, -2/5, 0, 0, -1, -25/12, 0]

The mfeisenstein(k,c1,c2) command generates the Eisenstein series
of weight k and characters c1 and c2. The mfEH(k) command is specific to
half-integral weight k and generates the Cohen–Eisenstein series of weight
k.

? T = mfTheta(); mfcoefs(T,16)

% = [1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2]

? mf = mfinit([4, 5, -4]); mftobasis(mf, mfpow(T, 10))

% = [64/5, 4/5, 32/5]

? B = mfbasis(mf); apply(mfdescribe, B)

% = ["F_5(1, -4)", "F_5(-4, 1)", "TR^new([4, 5, -4, y])"]

? mfisCM(B[3])

% = -4

Here, we compute the coefficients of θ10 on the basis of mf (we know
of course the level, weight, and character). We then apply the mfdescribe

function, which tells us that the first two forms in the basis are Eisenstein
series, and the third one is some trace form on the cuspidal new space. How-
ever, the last command says that this third basis element is a CM form, so
that its coefficients can be computed just as fast as those of Eisenstein series,
so that there does exist an explicit formula for the number of representations
as a sum of ten squares.

Keeping the above sessions, we can also write:

? mftobasis(mf, mfpow(H2, 2))

% = [1/18000, 1/18000, -3/2000]~

14

7.2 Functions Created from Mathematical Objects

? [mf,F,co] = mffromell(ellinit("26b1")); co

% = [1/2, 1/2]~

? mfcoefs(F,10)

% = [0, 1, 1, -3, 1, -1, -3, 1, 1, 6, -1]

This creates the modular form attached by modularity to the second
isogeny class of elliptic curves over Q for conductor 26. The result is a 3-
component vector: mf is the modular form space, F the modular form, and
co are the coefficients of F on the basis of mf.

Similarly, there are functions mffromlfun (from L-functions attached to
eigenforms), mffromqf (from quadratic forms) and mffrometaquo:

? F = mffrometaquo([1, 2; 11, 2]); mfcoefs(F, 10)

% = [0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2]

? F = mffrometaquo([1, 2; 2, -1]); mfparams(F)

% = [16, 1/2, 1, y]

? mfcoefs(F, 10)

% = [1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0]

The mfparams command tells us that F ∈M1/2(Γ0(16)).

8 Atkin, Hecke and Expanding Operators

? mf = mfinit([96,4], 0); mfdim(mf)

% = 6

? M = mfheckemat(mf, 7)

% =

[0 0 0 372 696 0]

[0 0 36 0 0 -96]

[0 27/5 0 -276/5 -276/5 0]

[1 0 -12 0 0 62]

[0 0 1 0 0 -16]

[0 -3/5 0 14/5 -16/5 0]

15

? P = charpoly(M)

% = x^6 - 1456*x^4 + 209664*x^2 - 2985984

? factor(P)

% =

[x - 36 1]

[x - 12 1]

[x - 4 1]

[x + 4 1]

[x + 12 1]

[x + 36 1]

Note a few things: first, the matrix of the Hecke operator T (7) does not
have integral coefficients. Indeed, recall that the basis of modular forms in
mf is mostly random, so there is no reason for the matrix to be integral.
On the other hand, since the eigenvalues of Hecke operators are algebraic
integers, the characteristic polynomial of T (7) must be monic with integer
coefficients. As it happens, it factors completely into linear factors to the
power 1, so all the eigenvalues of T (7) are in fact in Z: this immediately
shows that the splitting will be entirely rational and the eigenforms with
integer coefficients. Let’s check:

? mffields(mf)

% = [y, y, y, y, y, y]

? L = mfeigenbasis(mf); for(i=1,6,print(mfcoefs(L[i],16)))

[0, 1, 0, 3, 0, 10, 0, 4, 0, 9, 0, -20, 0, 70, 0, 30, 0]

[0, 1, 0, 3, 0, 2, 0, 12, 0, 9, 0, 60, 0, -42, 0, 6, 0]

[0, 1, 0, 3, 0, -14, 0, -36, 0, 9, 0, -36, 0, 54, 0, -42, 0]

[0, 1, 0, -3, 0, 10, 0, -4, 0, 9, 0, 20, 0, 70, 0, -30, 0]

[0, 1, 0, -3, 0, 2, 0, -12, 0, 9, 0, -60, 0, -42, 0, -6, 0]

[0, 1, 0, -3, 0, -14, 0, 36, 0, 9, 0, 36, 0, 54, 0, 42, 0]

We see that of the six eigenforms, the last three are twists of the first
three.

There also exists the command G=mfhecke(mf,F,n), which given a mod-
ular form F in mf, outputs the modular form T (n)F .

16

? mf=mfinit([96,6],0); mffields(mf)

% = [y, y, y, y, y, y, y^2 - 31, y^2 - 31]

? mfatk = mfatkininit(mf,3);

% factor(charpoly(mfatk[2]/mfatk[3]))

% =

[x - 1 5]

[x + 1 5]

This requires a little explanation: the command mfatkininit(mf,3)

computes a number of quantities necessary to work with the Atkin–Lehner
operator W3 in the space mf. The main part of the result is the second
component, which is essentially the matrix of W3 on the basis of mf, and
which is guaranteed to have exact coefficients (here rational). However in
the general case, the matrix of W3 is equal to mfatk[2]/mfatk[3], where
mfatk[3] may be an inexact complex number. For now you need not worry
about the first component.

Thus, the eigenvalues (or possibly the pseudo-eigenvalues) must be of
modulus 1, and in the case of a quadratic character defined modulo N/Q,
they are equal to ±1 in even weight, to ±i in odd weight. Here, 1 and
−1 both occur 5 times. However, this does not tell us which eigenvalues
correspond to each eigenspace. For this, we do the following:

? mfatkineigenvalues(mf,3)

% = [[-1], [-1], [-1], [1], [1], [1], [-1, -1], [1, 1]]

? mf=minit([96,3,-3],0); mffields(mf)

% = [y^4 + 8*y^2 + 9, y^4 + 4*y^2 + 1]

? mfatkineigenvalues(mf,32)

% = [[I, -I, -I, I], [-I, I, I, -I]]

? mfatkineigenvalues(mf,3)

% = [[a, -conj(a), -a, conj(a)], [b, -conj(b), conj(b), -b]]

The first command tells us that in the six rational eigenspaces, the first
three have eigenvalue −1, the other three +1, and in the eigenspaces of
dimension 2, the first eigenspace has both eigenvalues −1, the second both
+1. As is seen from the next lines, it is of course not necessary for the
eigenvalues of WQ in the same eigenspace to be equal.

In the next two commands, we are now in a case where the character is
non trivial and the weight odd. The eigenvalues are now ±i, and not equal
in the same eigenspace.

17

Finally, the last command is a case where the character is not defined
modulo N/Q = 96/3 = 32, so we only have pseudoeigenvalues, which are
simply of absolute value 1 by Atkin–Lehner theory. Here, a and b are com-
plicated complex numbers and conj denotes the complex conjugate (using
the algdep command, one can check that a is a root of 9x4 + 10x2 + 9 = 0
and b is a root of 3x4 − 2x2 + 3 = 0.

Note that when the character is (trivial or) quadratic and defined modulo
N/Q the output is always rounded, but otherwise, the eigenvalues are given
as approximate complex numbers.

As for the Hecke operators, there exists an mfatkin command, whose
syntax is mfatkin(mfatk, F), where mfatk is the output of an mfatkininit

command and F is in the space mfatk, and which outputs the modular form
F |kWQ, where Q is implicit in mfatk.

Finally note the mfbd expanding command which computes B(d)F :

? E4 = mfEk(4); mfcoefs(E4,6)

% = [1, 240, 2160, 6720, 17520, 30240, 60480]

? F = mfbd(E4,2); mfcoefs(F,6)

% = [1, 0, 240, 0, 2160, 0, 6720]

9 Algebraic Functions on Modular Forms

Here we give examples of functions on modular forms which do not involve
any approximate numerical computation. We have already mentioned the
most important ones: mfhecke, mfatkin, and mfbd.

? E4 = mfEk(4); F = mfderivE2(E4); mfcoefs(F,5)

% = [-1/3, 168, 5544, 40992, 177576, 525168]

? E6 = mfEk(6); mfisequal(F, mflinear([E6], [-1/3]))

% = 1

? G = mfbracket(E4, E6, 1); mfcoefs(G,5)

% = [0, -3456, 82944, -870912, 5087232, -16692480]

? mfisequal(G, mflinear([mfDelta()], [-3456]))

% = 1

In the first commands, we compute the Serre derivative of E4, and check
that it is equal to −E6/3. The name mfderivE2 of course comes from the
fact that the Serre derivative involves the quasi-modular Eisenstein series
E2. Note that there exists the function mfderiv (including to negative order,
corresponding to integration), which is provided for the user’s convenience

18

for certain computations, but whose output is outside the range of modular
forms.

The second computation checks that the first Rankin–Cohen bracket of
E4 and E6 is a multiple of ∆.

You may complain that it is heavy to write an mflinear command as
above simply to compute a scalar multiple of a form. But nothing prevents
you from defining in a script that you read at the beginning of your session:

mfscalmul(F,s)=mflinear([F],[s]);

mfadd(F,G)=mflinear([F,G],[1,1]);

mfsub(F,G)=mflinear([F,G],[1,-1]);

There also exist the natural operations on modular forms mfmul, mfdiv
(which may result in modular functions, i.e., with poles), and mfpow. There
is also a function mfshift (multiply or divide by a power of q), but which
again takes us outside the range of modular forms.

? E4 = mfEk(4); F = mftwist(E4, -3); mfcoefs(F, 7)

% = [0, 240, -2160, 0, 17520, -30240, 0, 82560]

? mfparams(F)

% = [9, 4, 1, y]

? mf = mfinit([4,5,-4], 1); F = mfbasis(mf)[1]; mfcoefs(F, 10)

% = [0, 1, -4, 0, 16, -14, 0, 0, -64, 81, 56]

? mfisCM(F)

% = -4

? G = mftwist(F, -4); mfcoefs(G, 10)

% = [0, 1, 0, 0, 0, -14, 0, 0, 0, 81, 0]

? mfparams(G)

% = [16, 5, -4, y]

? mfconductor(mfinit(G, 1), G)

% = 8

This session illustrates a number of important issues concerning twisting.
In the first commands, we twist E4 by the quadratic character −3 (in the
present implementation, only twisting by quadratic characters is allowed),
and we see that the resulting form has level 9 = (−3)2. Fine. In the next
command, we compute the unique form in S4(Γ0(5), χ−4), and see that it
has CM by Q(

√
−4).

However, note that the form is not equal to the form twisted by the
character χ−4 (only the coefficients of qn with n prime to 4 are equal, the

19

others vanish). The mfparams command tells us that the twisted form has
level 16 = (−4)2. However, the final command tells us that in fact it has
level 8: mfconductor gives the smallest level on which the form is defined.

? mf = mfinit([96,2], 1); L = mfbasis(mf);

? apply(x->mfconductor(mf,x), L)

% = [24, 48, 96, 32, 96, 48, 96, 96, 96]

? apply(x->mftonew(mf,x)[1][1..2], L)

% = [[24, 1], [24, 2], [24, 4], [32, 1], [32, 3],\

[48, 1], [48, 2], [96, 1], [96, 1]]

Here we compute the full cuspidal space S2(Γ0(96)), of dimension 9, and
we ask which is the lowest level on which each form in the basis is defined.
This list shows that there is one form F1 in level 24 which, by applying B(d)
with d = 2 and d = 4 gives a form of level 48 and one of level 96. Then a
form F2 in level 32, by applying B(3) gives a form of level 96, a form F3 in
level 48, by applying B(2) gives a form of level 96, and finally two genuine
forms of level 96 (so that the dimension of the newspace is equal to 2, which
we can check by typing mfdim([96,2],0)).

The last command mftonew checks all this; look at the precise description
of the command.

10 Cusps and Cosets

Recall that in the present version of the package, the only congruence sub-
group that is considered is Γ0(N), so when we consider cusps in the geomet-
rical sense, they are cusps of Γ0(N), and cosets are right cosets of Γ0(N) in
Γ, so that Γ =

⊔
j Γ0(N)γj .

The function mfcusps(N) gives the list of all (equivalence classes of)
cusps of Γ0(N), mfcuspwidth(N,cusp) gives the width of the cusp; these
are linked to the geometry. On the other hand, the notion of regularity
of a cusp is linked to the specific modular form space, and the function
mfcuspisregular([N,k,CHI],cusp) determines if the cusp is regular or
not:

? C = mfcusps(108)

% = [0, 1/2, 1/3, 2/3, 1/4, 1/6, 5/6, 1/9, 2/9, 1/12,\

5/12, 1/18, 5/18, 1/27, 1/36, 5/36, 1/54, 1/108]

? [mfcuspwidth(108,c) | c<-C]

% = [108, 27, 12, 12, 27, 3, 3, 4, 4, 3, 3, 1, 1, 4,\

20

1, 1, 1, 1]

? NK = [108,3,-4];

? [mfcuspisregular(NK,c) | c<-C]

% = [1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1]

? [c | c<-C, !mfcuspisregular(NK,c)]

% = [1/2, 1/6, 5/6, 1/18, 5/18, 1/54]

The first command list the 18 cusps of Γ0(108) (mfnumcusps(108) gives
this directly, useful if there are thousands of cusps and you do not want them
explicitly), the second command prints their widths, and the last commands
show that the cusps 1/2, 1/6, 5/6, 1/18, 5/18, and 1/54 are irregular in the
space M3(Γ0(108), χ−4), and the others are regular.

There is another command mfcuspval having to do with cusps, but this
will be mentioned later.

? C = mfcosets(4)

% = [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2],\

[0, -1; 1, 3], [1, 0; 2, 1], [1, 0; 4, 1]]

? mftocoset(4, [1, 1; 2, 3], C)

% = [[-1, 1; -4, 3], 5]

The mfcosets(N) command lists all right cosets of Γ0(N) in Γ. Note
that in the present implementation the trivial coset is always the last one,
and is represented by the matrix [1, 0;N, 1], but since this may change one
must be careful.

The mftocoset(N,M,C) command gives a two-component vector [γ, i],
where γ ∈ Γ0(N) is such that M = γ · C[i].

11 The mfslashexpansion command

We now give examples of the use of advanced features of the package, which
use inexact complex arithmetic. However in many cases the results are
known algebraic numbers and, if asked to do so, the function gives them
exactly.

This command returns the Fourier expansion at infinity of f |kγ, for
γ ∈ GL2(Q)+. It returns a vector v of coefficients, which can only be
interpreted together with three extra parameters α ∈ Q≥0, w ∈ Z≥1 and
a 2 × 2 upper triangular matrix A = [a, b; 0, d] (equal to the identity if

21

γ ∈ PSL2(Z)). We have f |kγ = F |kA, with

F (τ) = qα
∑
n≥0

v[n]qn/w

and q = e(τ). Of course, F |kA = (a/d)k/2F (τ + b/d) so the exact expansion
is easily inferred from the returned one, whereas the chosen encoding allows
to compute the coefficients v[n] in a smaller number field than if we had
included all the constants into v. It is important to note that the three
parameters α,w,A only depend on the modular form space and γ, but not
on the form f .

? mf = mfinit([4,6]); B = mfbasis(mf);

? for (i=1, #B, \

print(mfslashexpansion(mf,B[i],[1,0;2,1],5,1,&P)))

\\ we don’t print P which is [0, 1, [1,0;0,1]] in all cases

[-1/504, 1, 33, 244, 1057, 3126]

[-1/504, 0, 1, 0, 33, 0]

[-1/32256, -1/64, 33/64, -61/16, 1057/64, -1563/32]

[0, -1, 0, 12, 0, -54]

? R = mfslashexpansion(mf,B[1],[0,-1;4,0],5,1,&P); [P,R]

% = [[0, 1, [1,0;0,1]], [-8/63, 0, 0, 0, 64, 0]]

? R = mfslashexpansion(mf,B[1],[0,-1;1,0],5,1,&P); [P,R]

% = [[0, 4, [1,0;0,1]], [-1/504, 0, 0, 0, 1, 0]]

? mf=mfinit([4,7,-4]); B=mfbasis(mf);

? for (i=1, #B, \

print(mfslashexpansion(mf,B[i],[1,0;2,1],5,1,&P)))

\\ we don’t print P which is [1/2, 1, [1,0;0,1]] in all cases

[1/64, 91/8, 7813/32, 7353/4, 530713/64, 221445/8]

[1, -728, 15626, -117648, 530713, -1771560]

[1/16, -15/2, 5/8, 75, -231/16, -465/2]

[2, 0, 20, 0, -462, 0]

? mfslashexpansion(mf,B[1],[0,-1;4,0],5,1,&P)

% = [Mod(61/256*t, t^2 + 1), Mod(-1/64*t, t^2 + 1),

Mod(-1/64*t, t^2 + 1), Mod(91/8*t, t^2 + 1),

Mod(-1/64*t, t^2 + 1), Mod(-7813/32*t, t^2 + 1)]

? P

% = [0, 1, [1, 0; 0, 1]]

? R=mfslashexpansion(mf,B[1],[0,-1;4,0],5,0)

% = [0.23828125000000000000000000000000000000*I,\

22

-0.015625000000000000000000000000000000000*I,\

-0.015625000000000000000000000000000000000*I,\

11.375000000000000000000000000000000000*I,\

-0.015625000000000000000000000000000000000*I,\

-244.15625000000000000000000000000000000*I]

? bestappr(R)

% = [61/256*I, -1/64*I, -1/64*I, 91/8*I, -1/64*I, -7813/32*I]

Here are some detailed explanations. The first space is M6(Γ0(4)), of
dimension 4. We ask for 1 + 5 terms of the Fourier expansion of F |6γ for all
F in the given basis, and γ = [1, 0; 2, 1], which is one of the possible Fourier
expansions at the cusp 1/2. The last parameter P contains [α,w,A] after
the call and the 1 means we want an exact algebraic expression (a 0 as used
in the last example means we expect floating point complex numbers).

We obtain the 4 desired expansions. In the next commands, we do
the same for the first basis element and γ = [0,−1; 4, 0], which is the
Fricke involution, and corresponds to the cusp 0. The next command,
which does essentially the same computation, uses γ = [0,−1; 1, 0], and
now P = [0, 4, [1, 0; 0, 1]] which tells us that the expansion is in powers of
q1/4.

The next example is the space M7(Γ0(4), χ−4), also of dimension 4, and
we ask the same thing. Now P tells us that α = 1/2 and w = 1 so we now
have for instance

B[1]|7γ = (1/64)q1/2 + (91/8)q3/2 + · · ·

In the next command, we expand B[1]|7γ with γ equal to the Fricke invo-
lution; and finally we check numerically by setting the one-to-last parameter
to 0 and obtain the expansion as raw complex numbers. We recognize them
immediately using the bestappr command.

Note that in the special case (like here) where γ is a Fricke (or more
generally an Atkin–Lehner) involution, we can proceed otherwise to obtain
the expansion:

? mfatk = mfatkininit(mf,4); C = mfatk[3]

% = -1.000000000000000000000000000*I

? F = mfatkin(mfatk, B[1]); mfcoefs(F, 6)

% = [61/256, -1/64, -1/64, 91/8, -1/64, -7813/32, 91/8]

This tells us that the true expansion of F |7W4 is the expansion that is
output divided by the constant C, so we recover the previous expansion.

23

It is important to see what affects the timing and correctness of the
mfslashexpansion command. The following session gives typical examples:

? mf = mfinit([496,4],0); F = mfbasis(mf)[1]; mfdim(mf)

time = 329 ms.

% = 45

? mfslashexpansion(mf,F,[1,0;3,1],5,0,&P);

time = 1,316 ms.

? mfslashexpansion(mf,F,[1,0;3,1],5,1,&P);

time = 51,136 ms.

? mf = mfinit([503,4],0); F = mfbasis(mf)[1]; mfdim(mf)

time = 1,505 ms.

% = 125

? sizebyte(mf)

% = 5123352

? mfslashexpansion(mf,F,[1,0;3,1],5,0,&P);

time = 32,640 ms.

? sizebyte(mf)

% = 18216400

? mfslashexpansion(mf,F,[1,0;3,1],5,0,&P);

time = 6,504 ms.

We omit the numerical outputs since they have no significance for the
present discussion. We notice several things:

• First, the time for rationalization (flag 1) in the first example is ex-
tremely large: 51 seconds instead of 1.3. The reason for this is that
the width of the corresponding cusp (here 1/3) is equal to P [2] = 496,
and the program must recognize algebraic numbers in the large cyclo-
tomic field Q(ζ496) which takes a huge amount of time. In fact, at the
default accuracy of 38D, the result is certainly wrong.

• Second, the time depends enormously on the dimension: the expansion
for dimension 125 is 25 times slower than for dimension 45, of course
not surprising, but it must be taken into account.

• Third, and most importantly, the last command shows the cache effect:
exactly the same instruction now requires only 6.5 seconds instead of
32.6. This is because, behind the scenes, the first mfslashexpansion

precomputed a number of quantities which it stored in your variable

24

mf: in fact, the sizebyte commands show that, after the first expan-
sion, the size of mf has more than tripled.

12 Analytic Commands

The existence of the mfslashexpansion command allows us to do many
useful things. In fact, already the mfatkininit and mfatkin commands
would not be possible without it. Immediate applications are the mfcuspval
command which computes the valuation at cusps, and the mfeval command,
which in addition to computing values in the upper-half plane (see below),
also computes values at the cusps:

? T = mfTheta(); mf=mfinit(T);C=mfcusps(mf)

% = [0, 1/2, 1/4]

? [mfcuspval(mf,T,c) | c<-C]

% = [0, 1/4, 0]

? mfeval(mf, T, C) \\ or [mfeval(mf,T,c) | c<-C]

% = [1/2 - 1/2*I, 0, 1]

More sophisticated is the computation of numerical periods, and more
generally of symbols ∫ s2

s1

(X − τ)k−2F |kγ(τ) dτ ,

where s1 and s2 are two cusps (e.g., s1 = 0, s2 =∞):

? mf = mfinit([96,4],0); [F1] = mfbasis(mf);

? FS1 = mfsymbol(mf,F1);

time = 2,272 ms

? mfsymboleval(FS1,[0,oo])

% = 2.0968669678226579060336519703627002478*I*x^2\

+ 0.36368580656317635568444277442842940073*x\

- 0.049315736834713109138297211986510643780*I

? mfsymboleval(FS1,[1,5/2])

% = 4.1937339356453158120673039407254004956*I*x^2\

+ (0.72737161312635271136888554885685880147\

- 14.678068774758605342235563792538901735*I)*x\

+ (-1.2729003229711172448955497104995029026\

+ 15.103654043044843600467382361156555509*I)

? mfsymboleval(FS1,[1,2],[0,-1;1,0])

25

% = (0.54552870984476453352666416164264410111\

+ 2.5224522361088961642654705389803540222*I)*x^2\

+ (-0.72737161312635271136888554885685880148\

- 6.2906009034679737181009559110881007434*I)*x\

+ 4.1937339356453158120673039407254004956*I

The general strategy for computing these quantities is first to do a pre-
computation which only involves mf and the form F using mfsymbol, which
can take a few seconds, but afterwards all the computations are instanta-
neous.

Note that if you only want the period polynomial from 0 to ∞ use
mfperiodpol(mf,F1) which gives the same answer as before but in only 20
ms.

You may also use mfsymboleval in two other ways, but note that in this
case the precomputation is not used so the computation may be slow:

? mf=mfinit([96,6],0);F=mfbasis(mf)[1];

? FS=mfsymbol(mf,F);

time = 9,761 ms.

? mfsymboleval(FS,[I,oo])

% = 0.0029721...*I*x^4 + 0.0137806...*x^3 + ... + 0.0061009...

? mfsymboleval(FS,[I,2*I])

% = 0.0029665...*I*x^4 + 0.0137326...*x^3 + ... + 0.0059760...

? mfsymboleval(FS,[I/10000,I])

% = 46.363730...*I*x^4 + 3.8815894...*x^3 + ... + 0.0183869...

? -x^4*subst(mfsymboleval(FS,[I,10000*I],[0,-1;1,0]),x,-1/x)

% = 46.363730...*I*x^4 + 3.8815894...*x^3 + ... + 0.0183869...

? mfsymboleval([mf,F],[I,oo])

% = 0.0029721...*I*x^4 + 0.0137806...*x^3 + ... + 0.0061009...

? mfsymboleval([mf,F],[I,2*I])

% = 0.0029665...*I*x^4 + 0.0137326...*x^3 + ... + 0.0059760...

These examples illustrate four points:

1. Computing an mfsymbol may be rather long (9.8 seconds in this ex-
ample), although as already mentioned, subsequent computations of
symbols between cusps will then be instantaneous.

2. As the next three commands show, mfsymboleval also accepts paths
with endpoints in the upper half-plane. Although we have tried to opti-
mize the computation, in certain cases (but not in the above example)

26

when one of the endpoints is close to the real line the computation
may be slow.

3. The next command shows the use of the extra parameter γ which
asks to integrate F |kγ instead of F , here with ga=[0,-1;1,0]. This
allows to perform the same computation with endpoints which are
away from the real line. This is essentially what is done automatically
by mfsymboleval.

4. The last two commands show a special format which avoids doing
the longish mfsymbol computation: the results are obtained almost
instantaneously without using symbols. The price to pay in using this
“cheaper” format is that the endpoints of the path cannot be cusps
other than oo.

? mf = mfinit([96,4],0); [F1,F2] = mfbasis(mf);

? FS1 = mfsymbol(mf,F1); FS2 = mfsymbol(mf,F2);

? mfpetersson(FS1)

% = 0.00061471684149817788924091516302517391826

? mfpetersson(FS2)

% = 0.0055324515734836010031682364672265652647

? mfpetersson(FS1, FS2)

% = 1.5879887877319313665 E-40 + 7.652958013165934297 E-42*I

Same remark: once the mfsymbols FS1 and FS2 initialized, all the Pe-
tersson product computations (as well as others) are essentially immediate.
Note that since neither F1 nor F2 are eigenforms, there is no reason for their
Petersson product to vanish. To prove it does we do as follows:

? BE = mfeigenbasis(mf);

? M = Mat([mftobasis(mf,f) | f<-BE]); M^(-1)

% =

[1 3 10 4 -20 70]

[1 3 2 12 60 -42]

[1 3 -14 -36 -36 54]

[1 -3 10 -4 20 70]

[1 -3 2 -12 -60 -42]

27

[1 -3 -14 36 36 54]

On the other hand, it is immediate to see that BE[i+3] is a twist of BE[i]
and that as a consequence their Petersson square are equal. It follows from
the shape of the above matrix that the Petersson scalar product of B[i] with
B[j] will vanish when the corresponding scalar product of the corresponding
columns vanish, hence for (i, j) = (1, 2), (1, 4), (1, 5), (2, 3), (2, 6), (3, 4),
(3, 5), (4, 6), and (5, 6).

Note that mfpetersson can also be used for two noncuspidal forms, as
long as the Petersson product converges. Consider the following example:

? mf = mfinit([12,5,-3]); cusps = mfcusps(mf);

? E1 = mfeisenstein(5,1,-3); [mfcuspval(mf,E1,c) | c<-cusps]

% = [0, 0, 1, 0, 1, 1]

? E2 = mfeisenstein(5,-3,1); [mfcuspval(mf,E2,c) | c<-cusps]

% = [1/3, 1/3, 0, 1/3, 0, 0]

? P(mf) =

{ my(E1S = mfsymbol(mf,E1));

my(E2S = mfsymbol(mf,E2));

mfpetersson(E1S,E2S); }

? P(mf)

% = -1.8848216716468969562647734582232071466 E-5\

- 1.9057659114817512165 E-43*I

? mf3 = mfinit([3,5,-3]); P(mf3)

time = 16 ms.

? mf96 = mfinit([96,5,-3]); P(mf96)

time = 3,521 ms.

The first commands create two Eisenstein series of weight 5, E5(1, χ−3)
and E5(χ−3, 1), which belong to M5(Γ0(3), χ−3). In the next commands, we
look at the larger space of level 12 and compute the valuations of E1 and
E2 at the six cusps of Γ0(12). We see that at these six cusps one of the
two Eisenstein series vanishes, so the Petersson product will converge, and
is computed in the next command. In the last commands we compute the
same product but in level 3 and level 96; because of the normalization, we
obtain essentially the same result (not given), but of course the times are
very different: 0.016 seconds in level 3 and 3.5 seconds in level 96.

There are two more important numerical functions: evaluating a modular
form at a point in the upper half plane, and evaluating the corresponding
L-function. We begin by a trivial example:

28

? E4 = mfEk(4); mf = mfinit(E4); mfeval(mf,E4,I)

% = 1.4557628922687093224624220035988692874

? 3*gamma(1/4)^8/(2*Pi)^6

% = 1.4557628922687093224624220035988692874

This is of course a trivial computation, simply sum the q-expansion. The
fact that the value of a modular form with rational coefficients such as E4 at
a CM point such as i has an explicit expression is a consequence of complex
multiplication.

? mf = mfinit([12,4],1); F = mfbasis(mf)[1];

? mfeval(mf, F, 1/Pi + 10^(-6)*I)

% = -89811.049350396250531782882568405506024\

- 58409.940965200894541585402642924371696*I

? mfeval(mf, F, 1/Pi + 10^(-7)*I)

% = 4.8212468504661113183253396691813292261 E-52\

+ 6.7885262281520647908871247541561415340 E-52*I

Several remarks are in order.

1. We are evaluating a modular form very near the real axis. If the form
was in level 1 such as E4 above, we could use a modular transfor-
mation to reduce to the evaluation in the fundamental domain of Γ,
which would be very fast. Here we do something similar but more
sophisticated.

2. Contrary to most examples, the result at height 10−7 is not a numerical
approximation of 0, the exact value is indeed as printed to the given
accuracy.

3. It is amusing to see the large oscillations of the value: at height 10−6

the value is still in the 105 range, and at 10−7 it is in the 10−52 range.
Of course it must eventually tend to 0 since F is a cusp form (for E4

it would tend to infinity).

4. When applying mfeval at a cusp (as above for mfTheta()), the result
is the value at the cusp, but is in general not equal to the limit of the
value of the modular form when the argument tends to the cusp, since
this limit is often infinite for a non-cusp form.

Note that when dealing with eigenforms, which may have several em-
beddings into C, the result will have several components, one for each em-
bedding:

29

? mf = mfinit([23,2],0); F=mfeigenbasis(mf)[1];

? mfeval(mf,F,I)

% = [0.0018695834459685012330841605500720163964,\

0.0018618146628840767703527958851699552194]

More generally, this embedding problem affects all numerical functions.
Continuing the above example:

? mfparams(F)

% = [23, 2, 1, y^2 - y - 1]

? mfslashexpansion(mf,F,[0,-1;1,0],5,1)

% = [0, -1/23, 1/23*y, -2/23*y + 1/23, -1/23*y + 1/23, 2/23*y]

? FS = mfsymbol(mf,F); mfpetersson(FS,FS)

% =

[0.00394889657400250316885... -1.0827196147167250830 E-40]

[-1.2120247024777595243 E-40 0.00564425429876478351015...]

The y in the second result is thus understood to be one of the roots of
the polynomial y2− y− 1, and the result of mfpetersson is a 2× 2 diagonal
matrix because of the two embeddings of F .

The other important evaluation function is that of the L-function at-
tached to a modular form. In fact, the modular form package only creates
(in a clever way) the L-function, all the rest of the work is done by the
L-function package. Note the important fact that the modular form need
not be an eigenform or even stable under the Fricke involution.

? E4 = mfEk(4); mf=mfinit(E4); LE = lfunmf(mf,E4);

? lfun(LE, 2) / Pi^2

% = -3.3333333333333333333333333333333333333

? lfun(LE, 0)

% -1

? D = mfDelta(); mf=mfinit(D); LD = lfunmf(mf,D);

? lfunlambda(LD, 3)/lfunlambda(LD, 5)

% = 1.5555555555555555555555555555555555556

? lfunlambda(LD, 1)/lfunlambda(LD, 3)

% = 2.3444283646888567293777134587554269175

? bestappr(%)

% = 1620/691

? mf = mfinit([23,2],0); F = mfbasis(mf)[1]; L = lfunmf(mf,F);

30

? lfun(L, 2)

% = 1.5959983753450272580976413437480171832

? G = mfeigenbasis(mf)[1]; M = lfunmf(mf,G);

? apply(x->lfun(x,I),M)

% = [-0.15856033373254740657327844579672155664\

+ 0.79671369922504818377602680344686311969*I,\

-0.10230278816509023908993775663030712037\

+ 0.65954223983092583287784522268295299513*I]

Note that the constant term a(0) is ignored by the L-function, but can
be recovered thanks to the formula a(0) = −L(F, 0).

The last commands illustrate first the fact that the L-functions can be
computed for non-eigenforms (F is not an eigenform), and second that
if there are several embeddings, the lfunmf function returns a vector of
lfunmf, one for each embedding.

Another illustration of the L-function package:

? LIN = lfuninit(LD, [6, 6, 50]);

? ploth(t = 0, 50, lfunhardy(LIN, t))

13 The mfeigensearch and mfsearch commands

The last commands that we want to illustrate are searching commands, The
idea is simple: you believe that you have a modular form, but you do not
know its level, weight, character, or field of definition of its coefficients, but
only a number of its Fourier coefficients, perhaps only modulo p, and you
would like to find forms which “match” your given form.

In this degree of generality, the search space is too wide. We have there-
fore decided to reduce the generality, so as to make the search more rea-
sonable. Note that this will probably vary with the different versions of
the program, so what is described here may be more restrictive than fu-
ture versions. In the present implementation, we assume that the form we
are looking for has rational coefficients, so that its character is (trivial or)
quadratic.

The mfsearch command does this naively but is likely to be more effi-
cient than taylor-made scripts:

? V = mfsearch([60,2],[0,1,2,3,4,5,6], 1); #V

time = 5 ms.

31

% = 3

? V = mfsearch([[1..60],2],[0,1,2,3,4,5,6], 1); #V

time = 40 ms.

% = 5

? [mfparams(f) | f<-V]

% = [[56, 2, 8, y], [58, 2, 1, y],

[60, 2, 1, y], [60, 2, 12, y], [60, 2, 60, y]]

? [print(mfcoefs(f,10)) | f<-V]

[0, 1, 2, 3, 4, 5, 6, -6, -4, -7, -20]

[0, 1, 2, 3, 4, 5, 6, -34, 37, 22, 7]

[0, 1, 2, 3, 4, 5, 6, 20, 0, -27, -6]

[0, 1, 2, 3, 4, 5, 6, -170/9, -272/9, -11/3, -134/9]

[0, 1, 2, 3, 4, 5, 6, 200/13, -304/13, -435/13, -278/13]

This command looks for all forms, first in level 60 then in level 1 to 60 and
weight 2 whose first coefficients are [0, 1, 2, 3, 4, 5, 6], the final 1 is optional
and specifies the space (in mfinit sense) where the search is performed, here
the cuspidal space (by default the full space). It returns a list of 3 forms in
level 60 and 5 in total.

The mfeigensearch command is more interesting. We look for is a cus-
pidal eigenform whose field of definition is Q, so that its Fourier coefficients
are integers, and its character is (trivial or) quadratic. An example is as
follows:

? AP = [[2,2], [3,-1]] \\ a(2) = 2 and a(3) = -1

? L = mfeigensearch([[1..120],4], AP); #L

% = 2

? [f,g] = L; [mfparams(f), mfparams(g)]

% = [[26, 4, 1, y], [118, 4, 1, y]]

? mfcoefs(f, 10)

% = [0, 1, 2, -1, 4, 17, -2, -35, 8, -26, 34]

? mfcoefs(g, 10)

% = [0, 1, 2, -1, 4, -13, -2, -27, 8, -26, -26]

The first command asks for all forms as above in weight 4 and level from
1 up to 120, such that a(2) = 2 and a(3) = −1. The answer is that there
are two forms, which we call f and g. We compute their levels (26 and
118 respectively), notice they have trivial character, and list their Fourier
coefficients up to 10 and we see that indeed a(2) = 2 and a(3) = −1 in both
cases.

32

To specify the coefficients that we want there are a number of ways.
The simplest, as above, is to give the list of pairs of integers [p, a(p)]. For
instance:

? L = mfeigensearch([[1..80],2], [[2,2], [7,-3]]); #L

% = 1

? F = L[1]; mfparams(F)

% = [75, 2, 1, y]

? mfcoefs(F, 12)

% = [0, 1, 2, -1, 2, 0, -2, -3, 0, 1, 0, 2, -2]

The coefficient a(p) may also be given as an intmod Mod(a,m) then one
looks for a match for a(p) modulo m. For instance, we come back to our
first example:

? AP5 = [[2,Mod(2,5)], [3,Mod(-1,5)]]; \\ now modulo 5

? L=mfeigensearch([[1..120], 4], AP); #L

% = 3

? [mfparams(f)[1] | f <- L]

% = [26, 26, 118]

? [F1,F2] = L; \\ let’s consider the first two

? mfcoefs(F1, 10)

% = [0, 1, 2, -1, 4, 17, -2, -35, 8, -26, 34]

? mfcoefs(F2, 10)

% = [0, 1, 2, 4, 4, -18, 8, 20, 8, -11, -36]

? F = mflinear([F1, F2], [-1, 1]);

? content(mfcoefs(F, mfsturm([26,4])+1))

% = 5

Working modulo 5, we now find that there is an extra eigenform satisfying
our criteria, and perhaps surprisingly, again in level 26. The first, F1, is
the one found above, with a(2) = 2 and a(3) = −1. The second, F2, has
a(2) = 2 but a(3) = 4 ≡ −1 (mod 5).

But we can go further and see that this is not a simple coincidence: the
next command shows that both eigenforms seem to be congruent modulo
5, at least up to a(10). In fact they are indeed congruent modulo 5: to
prove this, we use the fact that the basic Sturm bound (the one obtained
using mfsturm([N,k]), not mfsturm(mf)) is also valid modulo p. Since all
coefficients are congruent up to the Sturm bound, they are congruent for all
n.

33

14 Half-Integral Weight Functions

14.1 General Functions

Many of the commands that we have seen, and most importantly the mfinit
and mfdim command, can be used verbatim in the case of modular forms of
half-integral weight, sometimes with small differences.

• Two functions created from mathematical objects can give forms of
half-integral weight, mfetaquo and mffromqf.

• Leaf functions created from scratch are mfTheta, which gives the stan-
dard Jacobi theta function of weight 1/2, and mfEH, which gives the
Cohen–Hurwitz Eisenstein series of half-integral weight.

? F = mffrometaquo([2,5;1,-2;4,-2]); Ser(mfcoefs(F,10),q)

% = 1 + 2*q + 2*q^4 + 2*q^9 + O(q^11)

? T = mfTheta(); mfisequal(F,T)

% = 1

? F = mffromqf(2*matid(3))[2]; Ser(mfcoefs(F,5),q)

% = 1 + 6*q + 12*q^2 + 8*q^3 + 6*q^4 + 24*q^5 + O(q^6)

? mfisequal(F, mfpow(T,3))

% = 1

• The only spaces which are directly available by mfinit and mfdim are
the full cuspidal space and the full modular form space. The new space
can be defined in some cases but indirectly, using Kohnen’s theory, see
below.

• The only Hecke operators T (n) which are nonzero are those where n
is a square (we have not programmed the T (p) with p dividing the
level).

14.2 Specific Functions

The most important specific function in half-integral weight is mfshimura,
which computes the Shimura lift corresponding to a discriminant D (1 by
default) and also returns an mf space containing the lift:

? mf=mfinit([60,5/2],1); F=mfbasis(mf)[1];

? D = [1,5,8,12,13,17,21];

? for (i=1, #D, \

34

[mf2,G] = mfshimura(mf,F,D[i]); print(mfcoefs(G,10)))

[0, 1, 2, 0, 2, -1, -2, 6, 6, -3, -10]

[0, 0, 0, -1, 0, 0, 20, 0, 0, -2, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 24, 0, 0, 0, 0, -48]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 3, 52, -5, -120, 14, -156, 3, 0]

? mfdescribe(mf)

% = "S_5/2(G_0(60, 1))"

? mfdescribe(mf2)

% = "S_4(G_0(30, 1))"

Two things to notice: first the image can be identically 0. Second, the
program takes some time (20 seconds for the above), because computing a
Shimura image takes time proportional to D4.

The other specific functions are related to the Kohnen +-space. Contin-
uing the above example:

? K=mfkohnenbasis(mf); matsize(K)

% = [14, 4]

? K[,1]

% = [-1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]~

? F=mflinear(mf,K[,1]);

? Ser(mfcoefs(F,35),q)

% = -q + 2*q^4 - 4*q^16 + 3*q^21 - 6*q^24 + 5*q^25 + O(q^36)

The first command shows that although the dimension of the cuspidal
space is 14, that of the Kohnen +-space is 4; if desired, the corresponding
modular forms can be obtained by mflinear(mf,K[,j]) for each j as done
in the next command. The Fourier expansion of F given on the last line
shows that the only nonzero coefficients of qn occur when n ≡ 0, 1 (mod 4).
Continuing:

? [mf2,FS]=mfshimura(mf,F); mfparams(FS)

% = [15, 4, 1, y]

? [mf2,FS]=mfshimura(mf,mfbasis(mf)[1]); mfparams(FS)

% = [30, 4, 1, y]

These commmands show that the image of an element of the Kohnen
+-space has level 15 = 60/4, while the second shows that the image of a
random form has level 30 = 60/2.

35

A final command related to the Kohnen +-space is mfkohnenbijection.
This allows, in half-integral weight, to compute the new space, its splitting,
and the eigenforms:

? [mf3,M,K,shi] = mfkohnenbijection(mf);

? M * mfheckemat(mf3,11) * M^(-1)

% =

[48 24 24 24]

[0 32 0 -20]

[-48 -72 -40 -72]

[0 0 0 52]

? mf30 = mfinit(mf3,0); B0 = mfbasis(mf30); #B0

% = 2

? BNEW = [mflinear(mf, K * M * mftobasis(mf3,f)) | f<-B0];

? BE = mfeigenbasis(mf30);

? BEIGEN = [mflinear(mf, K * M * mftobasis(mf3,f)) | f<-BE];

? Ser(mfcoefs(BEIGEN[1],24),q)

% = q + q^4 - 3*q^9 - 5*q^16 + 6*q^21 + 3*q^24 + O(q^25)

? Ser(mfcoefs(BEIGEN[2],24),q)

% = q^5 + q^8 - 3*q^12 - 4*q^17 + 3*q^20 + O(q^25)

? mfcoefs(BEIGEN[1],10^4);

time = 7,532 ms.

The mfkohnenbijection command computes a square matrix M giv-
ing a Hecke-module isomorphism from the space S2k−1(Γ0(N), χ2) to the
Kohnen +-space S+

k (Γ0(4N,χ)). Note that this makes sense only when N
is squarefree.

Thus, M allows to transport all problems from the “difficult” space
S = S+

k (Γ0(4N), χ) to the “easy” space S2k−1(Γ0(N), χ2). For instance,
the next command (essentially instantaneous) gives the matrix of the Hecke
operator T (121) on S; a direct implementation using the action of T (121)
would take 10.6 seconds.

The vector BNEW computed afterwards gives a basis of the Kohnen new
space S+,new

k (Γ0(4N), χ), here of dimension 2.
The vector BEIGEN computed in a similar way contains the eigenfunctions

of this new space. The example of BEIGEN[2] shows that, contrary to the
integral weight case, these eigenfunctions can have vanishing coefficient of

36

q1. Note that we know by construction that the image of BEIGEN[j] by any
Shimura lift is a multiple of BE[j] (with the same index j).

The above construction of the new space and the eigenforms being so
useful, a specific function exists for this purpose: instead of all the above,
simply write [mf30,BNEW,BEIGEN]=mfkohneneigenbasis(mf,bij). Here
BNEW and BEIGEN will be matrices whose columns are the coefficients of a
basis of the Kohnen new space and of the eigenforms respectively, and mf30

the corresponding new space of integral weight.

15 Reference Manual for the Package

We give a brief description in alphabetical order of all the functions specific
to the package. To use the package, it is sometimes necessary to use func-
tions on characters or functions of the lfun package, but those will not be
described here.

Note that when a modular form F can be embedded in C in several ways
(typically for eigenforms), some functions give a vector (or even a matrix for
bilinear operations) of results, one for each embedding: this occurs specifi-
cally for lfunmf, mfeval, mfmanin, mfpetersson, mfsymboleval. This will
not always be specified.
getcache(): returns technical information about auto-growing caches.

lfunmf(mf,{F}): creates the L-function associated to F , for use in the
lfun package, where F need not be an eigenform. If F is omitted, output
all L-functions associated to the eigenforms. If F (or the eigenforms) have
several embeddings in C, output the vector of the corresponding lfunmf.

mfatkin(mfatk, F): computes F |kWQ, where Q‖N , where mfatk must
have been initialized by mfatk=mfatkininit(mf,Q).

mfatkineigenvalues(mf, Q): mf being a cuspidal or new space and Q a
primitive divisor of N , output the vector of Atkin–Lehner eigenvalues or
pseudo-eigenvalues for each Galois eigenspace.

mfatkininit(mf,Q): initialization function for the mfatkin function. The
output is [mfb,M,C,mf], where C is a complex constant, M/C is the matrix
of the Atkin–Lehner operator WQ from the space mf to the space mfb (set
equal to 0 if equal to mf). The matrix M is guaranteed to be with exact
coefficients (rational or polmods).

mfbasis(mf,{space = 4}): gives a basis of the space of modular forms mf,
either output by an mfinit command, in which case space is ignored, or
mf=[N,k,CHI] (use mfeigenbasis for the eigenforms).

37

mfbd(F,d): gives B(d)(F), B(d) expanding operator.

mfbracket(F,G,{m = 0}): mth Rankin–Cohen bracket of F and G.

mfcoef(F,n): nth Fourier coefficient a(n) of F .

mfcoefs(F,n): vector [a(0), a(1), ..., a(n)] of the Fourier coefficients of F up
to n. If F is a modular form space, give the matrix whose columns are the
vectors of the Fourier coefficients of the basis.

mfconductor(mf,F): smallest M such that F belongs to Mk(Γ0(M), χ).

mfcosets(N): list of right cosets of Γ modulo Γ0(N). In the present im-
plementation, the trivial coset is the last and represented by the matrix
[1, 0;N, 1]. N can also be an mf.

mfcuspisregular(NK,cusp): NK being [N, k, χ] or an mf, determine if the
cusp is regular or not.

mfcusps(N): list of cusps of Γ0(N). N can also be an mf.

mfcuspval(mf,F,cusp): valuation of modular form F at cusp, which can
be a rational number or oo.

mfcuspwidth(N,cusp): width of cusp in Γ0(N). N can also be an mf.

mfDelta(): Ramanujan’s Delta function of weight 12.

mfderiv(F,{m = 1}): mth derivative q.d/dq of F , where m can be neg-
ative, corresponding to integration (the constant term is then set to 0 by
convention). The result is only quasi-modular.

mfderivE2(F,{m = 1}): mth Serre derivative q.d/dqF − kE2F/12.

mfdescribe(F,{&G}): F being a modular form or a modular form space,
gives a human-readable description of F . If the address of G is given, put
in it the vector of parameters of the outmost operator defining F (empty
vector if F is a leaf or a modular form space).

mfdim(mf,{space = 4}): dimension of the space mf, where mf can also
be of the form [N, k, χ] in which case space is taken into account. mf can
also be of the form [N, k, 0], where 0 is a wildcard, in which case it gives
detailed information for each character χ for which the corresponding space
of level N , weight k and given character is nonzero: each result is of the
form [order,Conrey,dim,dimdih], where Conrey is the Conrey label for
the character, order is its order, dim is the dimension of the corresponding
space, and dimdih, which is computed only in weight 1, is the dimension of
the subspace of dihedral forms.

38

mfdiv(F,G): division of F by G.

mfEH(k): k being half-integral, gives the Cohen–Eisenstein series of weight
k on Γ0(4).

mfeigenbasis(mf): mf containing the new space, gives (in some order) the
basis of normalized eigenforms.

mfeigensearch(NK,AP): search for normalized eigenforms with integer coef-
ficients in spaces specified by NK, satisfying conditions satisfied by AP. NK is a
pair [N, k], the search being in level N and weight k with trivial or quadratic
character; the parameter N may be replaced by a vector of allowed levels.
AP is a list of pairs [[p1, a(p1)], ..., [pn, a(pn)]], where a(p) is either an integer
or an intmod (match modulo a(p).mod).

mfeisenstein(k,{χ1},{χ2}): Eisenstein series Ek(χ1) or Ek(χ1, χ2), nor-
malized so that a(1) = 1 (so mfeisenstein(k) without any character argu-
ment is equal to mfEk(k) multiplied by −Bk/(2k)).

mfEk(k): Eisenstein series Ek for the full modular group normalized so that
a(0) = 1, including for k = 2.

mfeval(mf,F,vtau): evaluation of F at the point vtau (or a vector of
points) in the completed upper half-plane. If F is an eigenform with several
embeddings in C, evaluate at each embedding.

mffields(mf): mf containing the new space, gives the list of relative poly-
nomials defining the number field extensions for all the Galois orbits of the
eigenforms. mf can also be a modular form, in which case the result is the
number field extension of Q(χ) in which the Fourier coefficients of mf lie.

mffromell(e): e being an elliptic curve defined over Q in ellinit format,
gives [mf,F,coe], where F is the eigenform corresponding to e by modu-
larity, mf the corresponding new space, and coe the coefficients of F on the
basis of mf.

mffrometaquo(eta,{flag = 0}): eta being a matrix representing an eta
quotient, gives the corresponding modular form or function. If the result is
not a modular form or function, return an error if flag=0, or 0 otherwise.
If the result has negative valuation, normalize to valuation 0.

mffromlfun(L): L being the L-function of a self-dual modular form with
rational coefficients, for instance a rational eigenform, retun [NK,space,v],
where mf = mfinit(NK,space) is a modular form space containing the form
and mftobasis(mf,v) yields the coefficients of F on the basis of mf.

39

mffromqf(Q,{P}): Q being an even integral quadratic form of even dimen-
sion and P an optional homogeneous spherical polynomial with respect to Q,
gives [mf,F,coe], where F is the theta function associated to Q and P, mf
the corresponding space, and coe the coefficients of F on the basis of mf.

mfgaloistype(mf,{F}): mf being either [N, 1, χ] or a new or cuspidal space
of weight 1 forms, outputs the type of the projective representations attached
to all the eigenforms in mf, or only that of F if it is given. The output is 2n
for Dn, or −12, −24, −60 for A4, S4, A5.

mfhecke(mf,F,n): Computes T (n)(f), where T (n) is the nth Hecke opera-
tor. Note that the level which is used is that of the modular form space mf,
not that of F if it is different.

mfheckemat(mf,n): matrix of T (n) on the space mf.

mfinit(NK,{space = 4}): create the space of modular forms associated to
NK = [N, k, χ] or NK = [N, k]. Codes for space is 0, new space, 1 cuspidal
space, 2 old space, 3 space of Eisenstein series, 4 full space Mk (default).
NK can also be of the form NK = [N, k, 0], where 0 is a wildcard, in
which case it gives the vector of all nonzero mfinit for each Galois orbit of
characters χ.

mfisCM(F): returns 0 if F does not have complex multiplication, and the
CM discriminant(s) if it does. Note that in weight 1 F may have two CM
discriminants, which occurs iff its galoistype is D2.

mfisequal(F,G,{lim = 0}): Are F and G equal, or at least are their first
lim+1 Fourier coefficients equal ?

mfkohnenbasis(mf): mf being a cuspidal space of half-integral weight and
level 4N with N squarefree, computes a basis B of the Kohnen +-space as
a matrix whose columns are the coefficients of B on the basis of mf.

mfkohnenbijection(mf): mf being a cuspidal space of half-integral weight,
computes [mf2,M,K,shi], where M is a matrix giving a Hecke-module iso-
morphism from the cuspidal space mf2 of weight 2k − 1 and level N to the
Kohnen +-space of weight k and level 4N , the columns of the matrix K are
the coefficients of the Kohnen +-space on the basis of mf, and shi gives
technical information about which linear combination of Shimura lifts has
been chosen.

mfkohneneigenbasis(mf,bij): mf being a cuspidal space of half-integral
weight and bij the output of mfkohnenbijection(mf), computes a triple
[mf0,Bnew,Beigen], where Bnew and Beigen are matrices whose columns

40

are the coefficients of a basis of the Kohnen new space and of the eigenforms
on the basis of mf respectively, and mf0 is the corresponding new space of
integral weight 2k − 1.

mflinear(vecF,vecL): linear combination of the forms in vecF with coef-
ficients in vecL. Forms must have the same weight and character, but not
necessarily the same level. This function is used for simpler operations such
as

mflinear([F],[s]) \\ scalar multiplication

mflinear([F,G],[1,1]) \\ addition

mflinear([F,G],[1,-1]) \\ subtraction

If vecF=mfbasis(mf), it is better to write mflinear(mf,vecL) instead,
since coefficient computations will be faster.

mfmanin(FS): FS being a modular symbol associated to an eigenform, re-
turns [[P+, P−], [ω+, ω−, r]] where the P± are the even/odd polynomials of
special values, the ω± the corresponding periods, and r = =(ω+ω−)/ <
F, F >.

mfmul(F,G): product of the modular forms F and G.

mfnumcusps(N): number of cusps of Γ0(N).

mfparams(F): returns parameters [N, k, χ, P] of the modular form F , where
K is the polynomial defining the number field containing the coefficients of
F (e.g., y if F is rational), or [−1,−1,−1, 0] if it is not defined. If F is a
modular form space, returns [N, k, χ, space].

mfperiodpol(mf,F,{parity = 0}): period polynomial of the form F ; if the
parity argument is 1 or −1, return the even/odd period polynomial.

mfperiodpolbasis(k,{parity = 0}): basis of period polynomials of weight
k for the full modular group, even/odd ones if parity is 1 or −1.

mfpetersson(FS,{GS = FS}): FS and GS being the modular symbols as-
sociated to F and G with mfsymbol, computes the Petersson product of F
and G with the usual normalization 1/[Γ : Γ0(N)]. (Petersson square if GS
is omitted.)

mfpow(F, n): Modular form F to the power n.

mfsearch([N,k], V, {space = 4}): search for rational modular forms of
weight k and level N in the specified modular form spaces whose Fourier
expansion up to the length of V exactly matches V . The output is a list

41

of forms. The parameter N may be replaced by a list of allowed levels, e.g.
[N1..N2] for all levels between N1 and N2.

mfshift(F,m): F divided by qm, omitting the remainder if there is one,
where m can be positive or negative. The result is usually not a modular
form.

mfshimura(mf,F,{D = 1}): F being a modular form of half-integral weight
k ≥ 3/2 and D a discriminant, return [mf2,FS,v], where FS is the cor-
responding Shimura lift of integral weight 2k − 1, mf2 the corresponding
modular form space and v the coefficients of FS on the basis of mf2. By
extension, D can also be a positive squarefree integer.

mfslashexpansion(mf,f,g,n,flrat,{&P}): compute the Fourier expan-
sion of f |kg to order n, where f is a form in mf and g ∈M+

2 (Q). If flrat is
set, try to “rationalize” (error if unsuccessful). If the output is [a(0), ..., a(n)]
and the optional P contains parameters [α,w,A], then f |kg = F |kA where
F (τ) = qα

∑
0≤j≤n a(j)qj/w, with q = exp(2πiτ). A is always upper trian-

gular and usually the identity, so that F |kA is immediate to compute.

mfspace(mf,{F}): type of modular space mf if F is omitted, or of a modular
form F in mf: result is 0 for new, 1 for cuspidal, 2 for old, 3 for full, 4 for
Eisenstein, and −1 if form is not in the space.

mfsplit(mf,{dimlim = 0},{flag = 0}): compute the eigenforms in mf,
and limit the dimension of each Galois orbit to dimlim if set. flag is used
to avoid some long computations (see doc). The space mf must contain
the new space. Note that the result is only a two-component vector vF,vK,
where vF is a vector of eigenforms and vK the corresponding number fields,
but is not similar to the output of an mfinit command.

mfsturm(mf): If mf is a space, true Sturm bound of mf, i.e., largest valuation
at infinity of a nonzero form. If mf is [N, k, χ], only an upper bound.

mfsymbol(mf,F): initialize data for working with integrals related to F such
as mfsymboleval, mfpetersson, and mfmanin.

mfsymboleval(FS,path,{γ}): FS being the modular symbol assocated to
some form F and path being [s1, s2] where s1 and s2 are cusps or points
in the upper half-plane, evaluate the symbol on the path, i.e., compute the
polynomial

∫ s2
s1

(X − τ)k−2F (τ) dτ . If γ ∈ GL+
2 (Q) is given, replace F by

F |kγ. If the integral diverges, the result will be either a rational function or
a polynomial of degree d > k − 2.

42

mftaylor(F,n,{fl = 0}): for now, only for F ∈Mk(Γ) and at the point i.
Compute the first n Taylor coefficients of F around i; if fl is set compute
in fact pn such that

f(τ) = (2i/(τ + i))k
∑
n≥0

pn((τ − i)/(τ + i))n .

mfTheta({χ}): unary theta series corresponding to the primitive Dirichlet
character χ, thus in weight 1/2 (resp., 3/2) if χ is even (resp., odd).

mftobasis(mf,F,{flag = 0}): coefficients of form F on the basis in mf. If
flag is set, do not return an error if F does not belong to mf or not enough
coefficients.

mftocoset(N,M,L): L being the list of cosets output by L=mfcosets(N)

and M being in SL2(Z), output a pair [γ, i] such that M = γL[i], where
γ ∈ Γ0(N).

mftonew(mf,F): Decompose F is the cuspidal space mf as a sum of B(d)GM
where GM ∈ Snew

k (Γ0(M), χ) and dM | N , return the vector of [M,d,G].

mftraceform(NK,{space = 0}): gives the trace form corresponding to
NK = [N, k, χ] and space (only the new space and the cuspidal space).

mftwist(F,D): twist of the form F by the quadratic character (D/n).

43

